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On the Detection of Black Holes
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It is shown that in principle the gravitational lens effect may lead to significant light variations when a
collapsed object such as a black hole passes between the observer and a normal star. Light curves characteristic
of such an event are computed, and the possibility of observing such an event is discussed.
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1. Introduction

The General Theory of Relativity coupled with
reasonable assumptions concerning the equation of
state for matter with over-nuclear density points
to the possible existence of “black holes”, that is to
say, to bodies which have undergone complete
gravitational collapse, have zero luminosity and
have radii determined by their masses (Oppenheimer
et al.,1939). The radii are given by r=2GM/c*
where M is the mass of the body, G the gravitational
constant and ¢ the speed of light. This value of r is
very small indeed : it would be about 3 km for a mass
equal to that of the sun.

With zero luminosity and such small dimensions,
black holes can be detected only through the effects
they have on nearby matter and radiation. Specifi-
cally, the gravitational field of a black hole will alter
the trajectory of neighboring bodies and light.
However, any dark body acts in this respect in an
identical way provided the neighboring bodies or
light are at appropriate distances. The recent
discussion by Cameron (1971) as to the nature of
the invisible companion of ¢ Aurigae, demonstrates
the need for a characteristic criterion distinguishing
black hole behaviour. In the absence of such a
criterion, one cannot avoid the natural temptation
to associate little-understood phenomena with black
holes (Hawking, 1971). The accretion of neighboring
matter by a black hole could produce X-radiation
(Zeldovich et al., 1964) but this radiation could also

be produced in other processes not related to black
holes. In this respect, it would be helpful to be able
to determine a small enough upper limit to the
dimension of an invisible object to permit distin-
guishing a black hole from the smallest known
“normal” stars.

The lens effect arising from the bending of light
in the neighborhood of a massive body could be
useful since the strength of the effect depends on the
proximity of the light trajectory to the body. It has
recently been stated by Trimble and Thorne (1969)
that the gravitational lens effect produced by a
collapsed star or neutron star would be too small to
be measured. We do not agree with this conclusion,
and in what follows we present the results of an
analysis that demonstrates the possibility of detect-
ing black holes through their lens effect with parti-
cular reference to binary systems in which one
component is a normal star while its companion is a
collapsed star.

II. The Gravitational Lens Effect

Consider the situation in which a small, dense,
dark possibly collapsed star (the “lens-star’) is seen
by an observer to be projected onto the disk of a
normal star. The lens effect on an infinitesimal part
of the normal star located at a projected radial
distance r from the lens-star is given by

L|L,= (1 n Sl!rfa:) (1 L 16Uz )—1/2
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where L is the luminosity as affected by the lens
effect, L, is the luminosity in the absence of the lens
effect, M is the mass of the lens-star and z is the
separation of the two stars. When the two stars are
perfectly aligned, the integrated effect for the whole
star is found by integrating Eq. (1) from =0 to
r = R, the radius of the star, and is given by
1/2
LiLo=(1+-%)" @
where L and L, now refer to the entire star. We are
not giving the details of the derivation for the
following reasons: Eq. (1) can be derived directly
from equation 18 of the paper by Refsdal (1964) by
going over from his angular parameters to ours and
by taking into consideration that the distance
between the two stars is negligible compared with
their distance from the observer on Earth; Eq. (2)
apart from being a direct consequence of Eq. (1), is
given, without derivation, in the paper by Trimble
and Thorne (1969). Expressing mass and radius in
solar units and the separation in astronomical units,
Eq. (2) becomes
1/2
£ = (1+734x10-0 Z2), (3)

It is easily shown that a wide range of reasonable
values for R and « will give a value for L/L, which
differs significantly from unity. For example, let
the mass of the collapsed star be M = 30 (a value
which we adopt later as being typical for a black
hole), the radius of the normal star R = 1, and the
separation z= 50, which is near the peak of the
frequency distribution of semi-major axes of normal
binaries Heintz (1969). Then we have, L/L,= 3.46,
an increase in the flux during a central eclipse of
more than two-hundred percent!

Consider the case of ¢ Aurigae, which Cameron
(1971) has recently suggested may have a black hole
component. At present (R = 1000, z=35) the
gravitational lens effect would be negligible. How-
ever, if the visible component has evolved from a
point initially on the upper-main sequence (R = 10,
say), and if at this early stage its companion was
already collapsed, then a distant observer in the
orbit plane would have seen a light amplification
given by L/Ly= 1.03, an increase of three percent,
or three one-hundredths of a magnitude which is
readily detected.

III. Theoretical Light Curves

Having shown that the passage of a massive,
collapsed star between an observer and a normal
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star can give rise to detectable light changes, and
recognizing that such an event is most likely to
occur in a binary system, we now examine the light
variation to be expected during an eclipse in such
a system. The lens effect when the eclipse is non-
central, i.e., when the two stars and the observer
are not aligned, can be calculated according to the
following expression

[ e (1+ 16;&[")”2 )

in which r and « are polar coordinates over the
surface of the star which is treated as a disk. The
origin of the polar coordinates is the intersection
between the stellar disk and the line joining the
Earth to the centre of the lens-star. If u is the
distance between the origin of the polar coordinates
8o defined and the centre of the visible star, we have

L|Ly=

R?= u2+ 2 — 2ur cosa (5)

from which do can be found in terms of r and dr
leading to the following expression

R+u
L__1
L, =nR? f

R—u

(R? — w? 4 r?) dr(r* + 16 Mx)V/? 6
(4,'3“2 J— (RS — 2 — r’)l)l/l M ( )

Let us perform the transformation 7%= 4 Ruz
+ (B — %)%, and set a= R[u and b= 16 Mxz/R%. We
then have

1 12z-|—a—-l 4az 4+ (@ — 1)® + a2 1/2d
“an (z—-z’)“’( daz + (@ — 1) ) Z-

(7)

This integral has been calculated for a range of
values of a and b sufficiently wide to give the varia-
tion in light intensity throughout an entire eclipse
and for different orientations of the orbit plane.
Some representative results are illustrated in Fig. 1
and Fig. 2. In each case, the solid curve illustrates
the light variation for an inclination of the orbit
plane to the plane of the sky of 90°, whereas the
dashed curve applies to the case where the inclina-
tion is less and such that the closest projected
approach of the centres of the two stars is R/2. We
use a normalized unit of time, 7', which is the time
during which the lens-star remains in the cone
defined by the edge of the normal star and the
observer, i.e., the normal duration of an eclipse.

For the case of an observer in the orbit plane,
the light amplification factor varies very slowly
during the time the lens-star remains within the cone
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Fig. 1. Time variation in apparent luminosity, expressed as
AL|L,, from one characteristic time unit before mid-
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curve: 90° inclination. Dashed curve: closest approach of
projected centres of stars is R/2
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Fig. 2. Same as Fig. 1 but for the case

16 M2

= = 20,

defined by the normal star and the observer. How-
ever, this factor drops very sharply to one-half its
maximum value as the lens-star reaches the edge
of the cone (a=1 or w = R). When the lens-star is
outside the cone the relative change in brightness is
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strongly dependent on the value of Mz/R?. If, for
example, Mz/R?= 0.0168 the additional luminosity
at u=12R is one-eighth that for u=0 (stars
perfectly aligned with the observer). However, for
Mz|R?= 0.0687 the effect at u = 1.2 R is greater than
one-fifth that for u = 0. The point to be emphasized
is that, for the eclipse of a normal star by a collapsed
star, the variation in brightness as a function of
time is characteristically different from that obtained
in the case of an eclipse by a large body, and gives
rise to a light variation which can be distinguished,
in most cases, from that of an intrinsically variable
star.

In order that the lens effect will occur as calcu-
lated, the eclipsing star must not have too large a
radius since it would otherwise intercept light rays
normally received from the visible star by the
observer. It can easily be shown that, because of the
bending of light, no ray going from the star to the

observer will approach the lens star to a coordinate

4Mzx .
= Z in the case where the

distance smaller than ry=

two stars and the observer are perfectly aligned.
Therefore, any star with coordinate radius sensibly
greater than this value will not produce the calcu-
lated effect. A better indication of the restriction
imposed by this result is possible if we rewrite this
limiting expression in the form ro/R = 4 Mx/R?. This
quantity varies, in our case, from 2.5 x 10-2 to
more than 100. We see, therefore, that there are
cases in which non-collapsed stars could also produce
the lens effect. In such a case the detection of the
effect might allow for a better check of the gravita-
tional bending of light than is possible during a
solar eclipse. As a test of the General Theory of
Relativity, the measurement of the bending of light
near the sun during a solar eclipse still leaves much
to be desired in the way of accuracy (Adler et al.,
1965). In the case of the lens effect one is not faced
with the difficult task of measuring the small
displacements of stellar images on a photographic
plate: it would be enough to find a time variation
of brightness in agreement with that calculated
according to the lens effect in order to have a good
check of the bending effect.

‘When the two stars are luminous with luminosity
A, and B, the total normal luminosity will be
Ly= Ay+ B,. At the time of the eclipse we will have
L= 4 + B,, and the apparent lens effect will be
given by
A 4 B, A— A4,

L
P2y ey Nl PSS A ®)
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and is smaller than the “true” lens effect. The
discrepancy between the two values of L/L, — the
one deduced from the apparent lens effect, the other
deduced from the time variation — may allow one
to distinguish between the case of two luminous
stars and the case in which one of the stars is a dark,
collapsed star.

IV. Observational Considerations

In this section we present the results of very
approximate calculations relating to the possibility
of observing the type of eclipse phenomenon de-
scribed above, and, therefore, the possibility of
detecting black holes by virtue of their presence in
eclipsing binary systems. These results are ne-
cessarily very uncertain for a number of reasons:
we cannot say with complete certainty whether black
holes do; or even can, exist; we cannot, therefore, say
much about their mass distribution, relative frequen-
cy in the neighborhood of the sun, frequency distribu-
tion of orbital parameters if they exist in binary
systems, etc. Many of these quantities are uncertain
even among ‘‘normal”’ stars.

One can easily show that in a binary system in
which one component is very much smaller than the
other, the probability of observing an eclipse (small
star in front) from a randomly selected direction in
space and at a randomly selected moment in time is
approximately

2 x 10822

where R is the radius of the normal star in solar
units, and « is their separation (we assume circular
orbits) in astronomical units. We assume that
among all stellar systems — single, binary, multiple
— one-percent are binaries in which one component
is a normal star and the other is a collapsed star. We
further assume that among these “‘collapsar binaries”
the frequency distribution of semi-major axes is
identical to that for binaries consisting of two
normal stars as given by Heintz (1969). We assume,
as indicated earlier, that the typical collapsed star,
or black hole, has a mass M = 30 ©, and that the
typical companion to a black hole has a radius and
mass each of three solar units. We further limit the
discussion to cases in which the light amplification
amounts to 59, or more. It follows that we are
considering systems with periods greater than about
11/, years, and, therefore, in order to avoid missing
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an eclipse event, the frequency of observation must
be at least one per day.

On the basis of the above, we have calculated
that among the approximately 108 stars brighter
than apparent visual magnitude 15, the expected
number of black hole eclipses per day is 0.06. Or, if
all the stars to a limiting apparent visual magnitude
of 15 were observed daily we could expect to detect
one collapsar binary eclipse every two to three
weeks. These expectation values can be scaled up or
down in proportion to the number of stars observed
and the assumed frequency of black hole binaries.
A single observer equipped with a telescope which
covers approximately 30 square degrees of the sky
in a single exposure, and photographing ten “average”
regions of the sky per night to the same magnitude
limit, could expect to continue for one to two
thousand nights before recording an event. To say
that one black hole eclipse event could be observed
in a given time interval is not, of course, the same
as saying that one black hole could be positively
identified during that time interval. Having dis-
covered a star which is abnormally bright at some
moment, the time-consuming task of making addi-
tional observations in order to establish the character
of the variation remains.

V. Conclusions

We have tried to demonstrate in this paper that
in the case of an eclipse of a normal star by a dark,
collapsed body, the gravitational lens effect may
appreciably alter the apparent brightness of the
star, and, furthermore, the light variation will have
a very characteristic form. From the shape of the
light curve, it should be possible to distinguish a
black hole or a neutron star from other dark bodies.
It would be premature to suggest that extensive
observational programs, beyond those already under-
way in the search for variable stars, be undertaken
for the express purpose of discovering black hole
eclipsing binary systems. We do, however, suggest
that if our assumptions about the frequency of
black hole binaries and the properties of their orbits
and companions are close to the truth, then the
probability of observing a black hole eclipse event,
although small, is non-zero, and observational
astronomers should be aware of the possibility of
observing such an event. It should also be emphasized
that, in the previous section, we have limited the
discussion to systems in which the light amplification
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could exceed 5%, and includes possible cases in
which the light amplification may have very large
values.

Acknow ts. We wish to thank Dr. W. Israel for
helpful discussions in the early phases of this work. Figs. 1
and 2 were prepared by Miss S. Dorper. Financial support
for this work has been received from the Province of Alberta
and the National Research Council of Canada.

References

Adler,R., Bazin,M., Schiffer, M. 1965, Introduction to
general relativity. McGraw-Hill, New York.
Cameron,A.G.W. 1971, Nature 229, 178

17+

On the Detection of Black Holes 255

Hawking,S.W. 1971, Phys. Rev. Lett. 26, 1344.

Heintz, W.D. 1969, J. R. astr. Soc. Can. 68, 275.

Oppenheimer,J., Snyder,H. 1939, Phys. Rev. 56, 455.

Refsdal,Sjur 1964, Mon. Not. R. astr. Soc. 128, 295.

Trimble,V.L., Thorne,K.S. 1969, Ap. J. 156, 1013.

Zeldovich, Y.B., Novikov,I.D. 1964, Soviet Phys. Dokl. 9,
246.

D. P. Hube

Department of Physics
University of Alberta
Edmonton 7, Alberta, Canada

C. Leibovitz

Theoretical Physics Institute
Department of Physics
University of Alberta
Edmonton 7, Alberta, Canada

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1971A%26A....15..251L

